
Silicon N Channel MOSFET Tetrode

BF 998

Features

- Short-channel transistor with high S/C quality factor
- For low-noise, gain-controlled input stages up to 1 GHz

Туре	Marking	Ordering Code (tape and reel)	Pir 1	Conf	igurat 3	ion 4	Package ¹⁾
BF 998	MO	Q62702-F1129	S	D	G ₂	G₁	SOT-143

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain-source voltage	$V_{ t DS}$	12	V
Drain current	ID	30	mA
Gate 1/gate 2 peak source current	\pm I G1/2SM	10	
Total power dissipation, <i>T</i> s < 76 °C	Ptot	200	mW
Storage temperature range	$T_{ m stg}$	- 55 + 150	°C
Channel temperature	Tch	150	

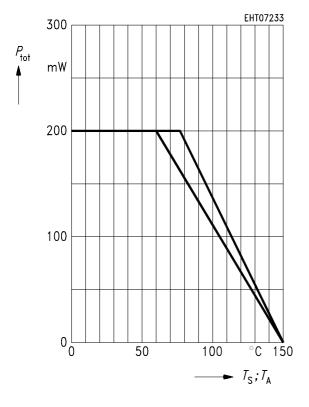
Thermal Resistance

			1
Junction - soldering point	$m{R}$ th JS	< 370	K/W

¹⁾ For detailed information see chapter Package Outlines.

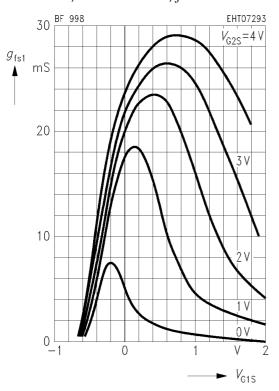
Electrical Characteristics

at $T_A = 25$ °C, unless otherwise specified.

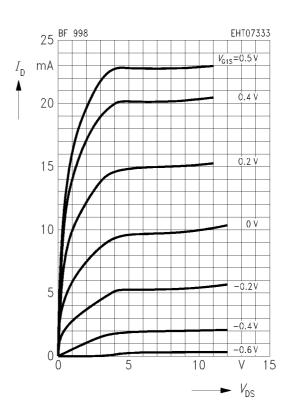

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Drain-source breakdown voltage $I_D = 10 \mu A$, $-V_{G1S} = -V_{G2S} = 4 \text{ V}$	$V_{(BR)}DS$	12	_	_	V
Gate 1-source breakdown voltage $\pm I_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	$\pm~V$ (BR) G1SS	8	_	12	
Gate 2-source breakdown voltage $\pm I_{G2S} = 10 \text{ mA}, V_{G1S} = V_{DS} = 0$	$\pm~V_{ m (BR)~G2SS}$	8	_	12	
Gate 1-source leakage current $\pm V_{G1S} = 5 \text{ V}, V_{G2S} = V_{DS} = 0$	$\pm I$ G1SS	_	_	50	nA
Gate 2-source leakage current $\pm V_{G2S} = 5 \text{ V}, V_{G1S} = V_{DS} = 0$	± IG2SS	_	_	50	
Drain current $V_{DS} = 8 \text{ V}, V_{G1S} = 0, V_{G2S} = 4 \text{ V}$	IDSS	2	_	18	mA
Gate 1-source pinch-off voltage $V_{DS} = 8 \text{ V}$, $V_{G2S} = 4 \text{ V}$, $I_D = 20 \mu\text{A}$	$-V_{G1S(p)}$	_	_	2.5	V
Gate 2-source pinch-off voltage $V_{DS} = 8 \text{ V}, V_{G1S} = 0, I_D = 20 \mu\text{A}$	$-V_{\sf G2S(p)}$	_	_	2	

Electrical Characteristics

at $T_A = 25$ °C, unless otherwise specified.

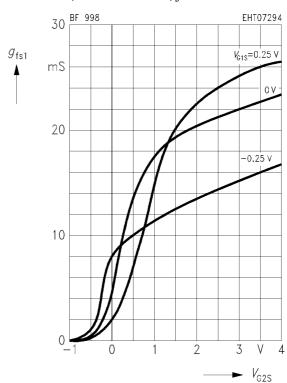

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics					
Forward transconductance $V_{DS} = 8 \text{ V}, I_{D} = 10 \text{ mA}, V_{G2S} = 4 \text{ V}$ f = 1 kHz	<i>g</i> fs	_	24	_	mS
Gate 1 input capacitance V_{DS} = 8 V, I_{D} = 10 mA, V_{G2S} = 4 V f= 1 MHz	$C_{ t g1ss}$	_	2.1	2.5	pF
Gate 2 input capacitance V_{DS} = 8 V, I_{D} = 10 mA, V_{G2S} = 4 V f= 1 MHz	$C_{ t g2ss}$	_	1.2	_	
Reverse transfer capacitance $V_{DS} = 8 \text{ V}, I_{D} = 10 \text{ mA}, V_{G2S} = 4 \text{ V}$ f = 1 MHz	C _{dg1}	_	25	_	fF
Output capacitance $V_{DS} = 8 \text{ V}, I_{D} = 10 \text{ mA}, V_{G2S} = 4 \text{ V}$ f = 1 MHz	Cdss	_	1.05	_	pF
Power gain (test circuit 1) $V_{DS} = 8 \text{ V}, I_{D} = 10 \text{ mA}, f = 200 \text{ MHz}, G_{G} = 2 \text{ mS}, G_{L} = 0.5 \text{ mS}, V_{G2S} = 4 \text{ V}$	$G_{ m ps}$	_	28	-	dB
Power gain (test circuit 2) $V_{DS} = 8 \text{ V}, I_{D} = 10 \text{ mA}, f = 800 \text{ MHz}, G_{G} = 3.3 \text{ mS}, G_{L} = 1 \text{ mS}, V_{G2S} = 4 \text{ V}$	$G_{ m ps}$	_	20	_	
Noise figure (test circuit 1) $V_{DS} = 8 \text{ V}, I_{D} = 10 \text{ mA}, f = 200 \text{ MHz}, G_{G} = 2 \text{ mS}, G_{L} = 0.5 \text{ mS}, V_{G2S} = 4 \text{ V}$	F	-	0.6	_	dB
Noise figure (test circuit 2) $V_{DS} = 8 \text{ V}, I_D = 10 \text{ mA}, f = 800 \text{ MHz}, G_G = 3.3 \text{ mS}, G_L = 1 \text{ mS}, V_{G2S} = 4 \text{ V}$	F	_	1	_	
Control range (test circuit 2) $V_{DS} = 8 \text{ V}, V_{G2S} = 4 \dots - 2 \text{ V}$ f = 800 MHz	ΔG ps	40	-	-	

Total power dissipation $P_{\text{tot}} = f(T_A)$

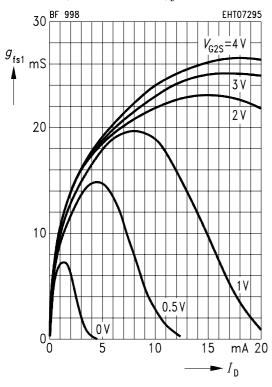

Gate 1 forward transconductance $g_{fs1} = f(V_{G1s})$

 $V_{DS} = 8 \text{ V}, I_{DSS} = 10 \text{ mA}, f = 1 \text{ kHz}$

Output characteristics $I_D = f(V_{DS})$

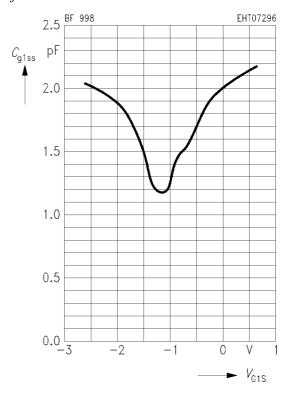

 $V_{\rm G2S} = 4 \text{ V}$

Gate 1 forward transconductance

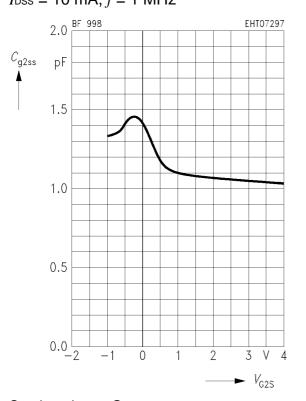

 $g_{\text{fs1}} = f(V_{\text{G2S}})$

 $V_{DS} = 8 \text{ V}, I_{DSS} = 10 \text{ mA}, f = 1 \text{ kHz}$

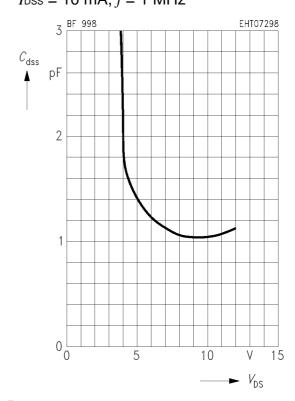
Gate 1 forward transconductance $g_{\text{fs1}} = f(I_{\text{D}})$


 $V_{DS} = 8 \text{ V}, I_{DSS} = 10 \text{ mA}, f = 1 \text{ kHz}$

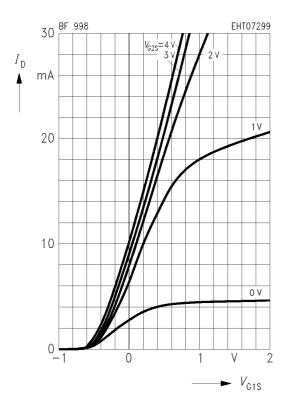
Gate 1 input capacitance $C_{g1ss} = f(V_{G1s})$


 $V_{G2S} = 4 \text{ V}, V_{DS} = 8 \text{ V}, I_{DSS} = 10 \text{ mA},$

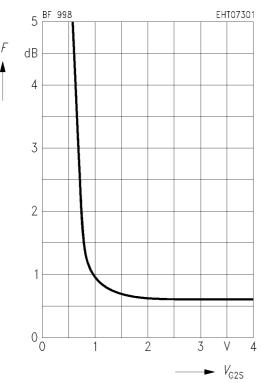
f=1 MHz


Gate 2 input capacitance $C_{\mathcal{Q}ss} = f(V_{G2S})$

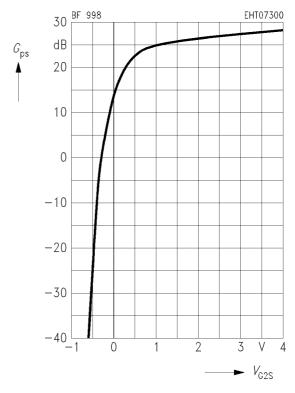
 $V_{\text{G1S}} = 0 \text{ V}, V_{\text{DS}} = 8 \text{ V}$ $I_{DSS} = 10 \text{ mA}, f = 1 \text{ MHz}$


Output capacitance $C_{dss} = f(V_{Ds})$

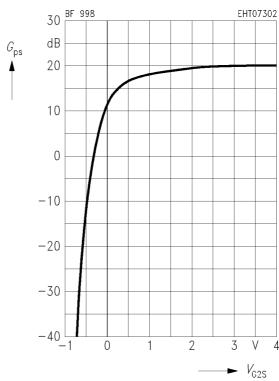
 $V_{\text{G1S}} = 0 \text{ V}, V_{\text{G2S}} = 4 \text{ V}$ $I_{DSS} = 10 \text{ mA}, f = 1 \text{ MHz}$


Drain current $I_D = f(V_{G1S})$

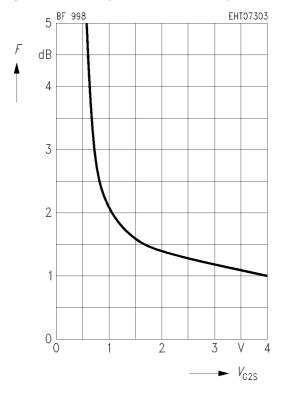
 $V_{\rm DS}$ = 8 V


Noise figure $F = f(V_{G2S})$

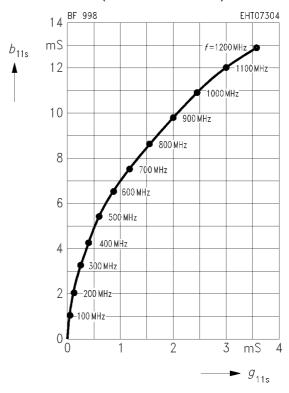
 $V_{DS} = 8 \text{ V}, V_{G1S} = 0, I_{DSS} = 10 \text{ mA},$ f = 200 MHz (see test circuit 1)


Power gain $G_{ps} = f(V_{G2S})$

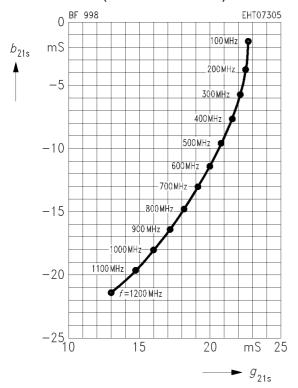
 V_{DS} = 8 V, V_{G1S} = 0, I_{DSS} = 10 mA, f = 200 MHz (see test circuit 1)


Power gain $G_{ps} = f(V_{G2S})$

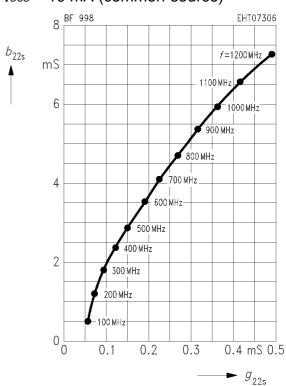
 $V_{DS} = 8 \text{ V}$, $V_{G1S} = 0$, $I_{DSS} = 10 \text{ mA}$, f = 800 MHz (see test circuit 2)


Noise figure $F = f(V_{G2S})$

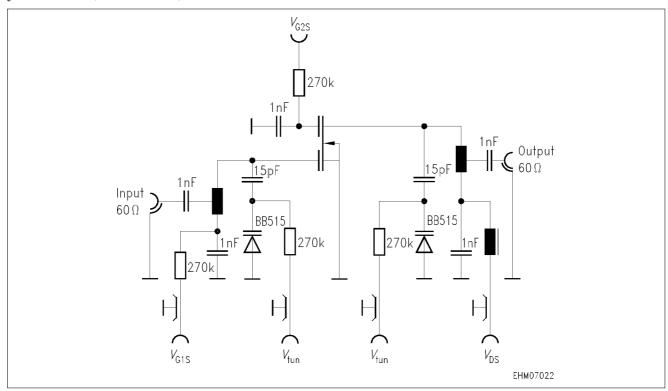
 $V_{DS} = 8 \text{ V}$, $V_{G1S} = 0$, $I_{DSS} = 10 \text{ mA}$, f = 800 MHz (see test circuit 2)


Gate 1 input admittance y_{11s}

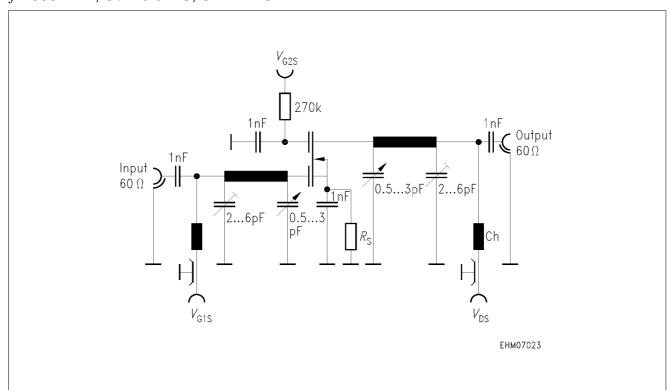
 $V_{DS} = 8 \text{ V}, V_{G2S} = 4 \text{ V}, V_{G1S} = 0,$ $I_{DSS} = 10 \text{ mA (common-source)}$


Gate 1 forward transfer admittance y 21s

 $V_{DS} = 8 \text{ V}, V_{G2S} = 4 \text{ V}, V_{G1S} = 0$ $I_{DSS} = 10 \text{ mA (common-source)}$


Output admittance y 22s

 $V_{DS} = 8 \text{ V}, V_{G2S} = 4 \text{ V}, V_{G1S} = 0$ $I_{DSS} = 10 \text{ mA (common-source)}$


Test circuit 1 for power gain and noise figure

f= 200 MHz, G_G = 2 mS, G_L = 0.5 mS

Test circuit 2 for power gain and noise figure

f= 800 MHz, G_G = 3.3 mS, G_L = 1 mS

